The NB AI-lab trains models for various purposes. They are most often based on the combination of NB’s digital collection.



Pre-trained semi-supervisely on enormous datasets, modern language models offer the possibility of adjusting their weights for specific supervised downstream tasks at a fraction of the cost with astonishing results. The NB AI-lab has released one of the best performing text models for Norwegian and other Scandinavian languages yet.

These encoder-only models are based on the same structure of BERT cased multilingual models, and are trained on a wide variety of Norwegian text (both Bokmål and Nynorsk) from the last 200 years.


NB-BERT-basener is a NB-BERT-base model fine-tuned for Named Entity Recognition using the NorNE dataset.


NB-GPT-J-6B is a Norwegian fine-tuned version of GPT-J 6B, a decoder-only transformer model trained using Mesh Transformer JAX. “GPT-J” refers to the class of model, while “6B” represents the number of trainable parameters (6 billion parameters). It has been trained on a mixture of library data and Internet data. It can generate text from a prompt, and even solve some tasks zero- and few-shot.

NB-T5 (in-progress)

Text-to-Text Transfer Transformers (T5) are a type of sequence to sequence models that enable tasks that involve transformation from a sequence of text into another, such as translation or text normalization. The framework is versatile enough to also allow classification and even regression.

We are currently evaluating T5 models trained on Norwegian text data and have plans to release them before the end of the year.



NB AI-lab has now released our NB-Whisper for Norwegian Bokmål and Nynorsk. The model is based on Whisper from OpenAI, and trained on data from Språkbanken and the digital collection at the National Library of Norway. Training data includes

The NB-Whisper models may be found on Huggingface. The NB AI-lab will be glad for feedback on your experience on using this model in various contexts.


There is a demo of the model which you can play with on this page.

Access and use

You may access the model and the model card on this page on Huggingface

Future work

Our plan is to release more Beta models in different sizes. The first is a Small model, next to come is Medium. When we reach a stable functional level, the official version will be released.

NB-Wav2vec 2.0

Similar to the way BERT models are trained, Wav2vec 2.0 models are trained in a self-supervised fashion by predicting speech units for masked parts of the audio. We have experimented with several of these models and released a series of fine-tuned models for Norwegian:


Front page detector

The front-page-detector is a fine-tuned version of ViT specifically designed to detect front-pages from newspapers. Given a single page image, the model is capable of deciding whether the image corresponds to a front-, a middle-, or a back-page in a given newspaper. The model is now in production internally in the library.